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Introduction

To support current efforts regarding pressurized thermal shock (PTS) screening criteria in a
manner consistent with NRC’s current views on risk-informed decision making, probabilistic risk
assessment (PRA) analysts need to: a) develop estimates of risk metrics such as core damage
frequency (CDF) and large early release frequency (LERF), and b) characterize the
uncertainties in these estimates.  Typically, this characterization is in the form of a probability
distribution (see Figure 1, where λ represents the frequency of interest and π(λ) is the
probability density function for that frequency).  But what does this distribution mean?  What
uncertainties does it represent?  Aren’t CDF and LERF already measures of uncertainty?  And
how do we develop the CDF and LERF distributions for PTS?

Figure 1 - Example Output of a PRA

This white paper answers these questions in two steps.  First, it addresses the issues of
uncertainty in a methodologically oriented discussion.  This includes a definition of the two
“types” of uncertainties currently distinguished in PRA, and a discussion of how they are
treated.  Second, based on this methodological discussion, it proposes an approach for
addressing uncertainties in PTS; this approach integrates thermal hydraulic (T/H) and
probabilistic fracture mechanics (PFM) analyses in a PRA framework.  The proposed approach
is then shown to be nearly identical with the current (“Method 2") PTS approach.  Differences
between the two approaches and their implications for PTS analysis are discussed. 

It is recognized that, despite the agreement between the proposed approach and the current
PTS approach, a number of details may need to be revised following input from domain
experts; the intent of this paper is to provide an initial approach to the problem that is
consistent with current PRA views on the treatment of uncertainty.

This paper also includes a list of references for further reading and three appendices covering
probability concepts, aleatory and epistemic uncertainties, and parameter estimation.
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Uncertainty Analysis Concepts

On the Meaning of “Frequency”

Although the analyses of CDF and LERF require the treatment of very different physical
phenomena, they are, from a mathematical viewpoint, both frequencies of undesired events.
This section discusses the notion of frequency as it is typically used in PRA models.  It is
shown that, in PRA, the frequency is a parameter in a probability distribution that quantifies
random variability (“aleatory uncertainty”) in an observable variable.

Let’s start with some basic assertions that provide the foundation for subsequent discussion.

1. There are physical variables which are, in principle, observable.  Examples include the
time to failure of a particular component, the time at which an operator takes a
particular action at a given point in an accident sequence, the average copper content
in a particular subregion of a particular reactor vessel at a particular point in time.

2. We need to predict the values of a set of these variables as part of the PRA analysis.

3. Because of limitations in resources, lack of knowledge, or both, we choose to treat
some of these variables as being the results of random processes.  In other words, if
we employ a thought experiment involving a number of repeatable trials, we envision
observing a distribution of values (e.g., an empirical histogram) for the variable of
interest.  The “prediction,” therefore, will be in terms of a probability distribution.

4. We also choose to treat the remaining variables as being deterministic.  If we employ a
thought experiment involving a number of repeatable trials, we envision observing a
single value for the variable of interest (or, at least, a range of variability that is
sufficiently small for the practical application).  The prediction, therefore, will be in terms
of a point value, at least in principle.

Note that because choice is involved, there is no fundamental principle as to when a variable
should be modeled as being random or deterministic; the analyst needs to decide if the notion
of repeatable trials makes sense for the problem being addressed.  In PRAs, such things as
pump failures and operator actions are modeled as being random; we treat pumps and
operators as coming from populations of pumps and operators, and don’t attempt to model
individual pumps or individual operators.  (One can argue that, even in the case of individual
pumps and operators, the notion of random variability still makes sense due to such processes
as environmental variation and renewal.)  In the case of a reactor vessel, the choice may be
less clear.  A proposed approach is discussed later in this paper.

Note also that, in current PRAs, core damage events and large early release events are
modeled as being the possible results of a set of interacting random processes, namely, those
involving the initiating event that causes a plant transient, the response of mitigating systems
to the transient, and the associated actions of human operators.  The occurrences of core
damage and large early release events are also, therefore, random processes.  
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For random events occurring over time, PRAs typically use a Poisson distribution to model
event occurrence.  This means that the probability of observing N core damage events in a
time period T is given by:

     (1){ } ( )P
T

N e
N

TN events in time T|λ
λ λ=
⋅

⋅ − ⋅
!

where λ, which is called a “frequency,” is a simply a parameter characterizing the process.  As
λ increases, the likelihood of events also increases (see Figure 2).  It can be shown that the
average number of events occurring in time period T is equal to λT.

Figure 2 - Poisson Probability Distributions for Two Values of λ

It turns out that for a Poisson process, if T1 is the time to the first event, then the distribution of 
T1 is exponential, i.e., 

     (2){ }P T t e t
1 1< = − − ⋅|λ λ

As λ increases, the probability of observing the first event by a specified time also increases
(see Figure 3).  It can be shown that the average time to the first event is equal to 1/λ.  It can
also be shown that

     (3){ }P T t t    when t1 01< ≈ ⋅ ⋅ <| .λ λ λ

As noted earlier, CDF and LERF are the frequencies of core damage events and large early
release events, respectively.  Thus, they are simply parameters of Poisson distributions. 
Knowing the values of CDF and LERF, we can make statements about the likelihood of
observing a core damage event or a large early release event in, say, the next year.  Of
course, 



1According to Webster’s, aleatory (adj.) comes from alia (a dice game); relevant
definitions are: (1) depending on an uncertain event; (2) relating to good or bad luck.
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we don’t know the values of CDF and LERF with a high degree of certainty.  This issue is
discussed in the following section.

Before concluding this discussion, it should be noted that the Poisson model, like all models,
has some underlying assumptions.  In particular, the Poisson model assumes that the process
doesn’t age, i.e., that λ does not change over time.  In the case of CDF and LERF, this can be
an unrealistic assumption.  For example, if a severe accident really does occur, we can expect
there to be significant changes in the industry (e.g., all plants might be shut down).  Less
dramatically, aging considerations might become important over time.  For most PRA
purposes, the Poisson model is adequate. 

Figure 3 - Effect of Frequency on Time-to-Occurrence

Types of Uncertainties: Aleatory and Epistemic

The preceding discussion addresses uncertainties due to “inherent randomness”.  In earlier
literature, they are often called “random uncertainties” or “stochastic uncertainties.”  Currently,
following the terminology espoused by the ACRS, they are called “aleatory uncertainties.”1 
Their principal characteristic is that they are (or are modeled as being) irreducible; they are
defined by the form of the probability distribution (e.g., the Poisson distribution) and the value
of the distribution parameters (e.g., λ).  

Note that in the examples given earlier, the variability in the uncertain variable (e.g., N or T1) is
observable, at least in principle.  In other words, repeated observations of the variable will
result in an empirical distribution of values.  This provides a way to think about aleatory
uncertainties; if repeated trials of an idealized thought experiment (where the conditions are
kept constant from trial to trial) will, assuming no measurement error, lead to a distribution of
outcomes for the variable, this distribution is a measure of the aleatory uncertainties in the
variable.  



2According to Webster’s, epistemic (adj.) comes from epistemikos (of knowledge,
capable of knowledge); relevant definitions are: (1) of, having the character of, or relating to
intellectually certain knowledge; (2) purely intellectual or cognitive; (3) subjective.

3Note that measurement error arises from an aleatory process.  However, if the
measured variable is, in principle, deterministic, then the uncertainties in the variable are
epistemic.  The apparent contradiction can be resolved by clearly defining what uncertainties
are being addressed in the PRA.  This issue is further discussed in Appendix A.
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Another type of uncertainty addressed in PRAs is “epistemic uncertainty,”2 which has been
called “state of knowledge uncertainty” in earlier papers because it is due to weaknesses in the
current state of knowledge of the assessor.  Uncertainties in a deterministic variable whose
true value is unknown are epistemic.  Repeated trials of a thought experiment involving the
variable will, in principle, result in a single outcome, the true value of the variable.3

Unlike aleatory uncertainty, epistemic uncertainty is reducible with the collection of additional
information.  In PRAs, for example, it is typically assumed that the Poisson model is a good
representation for the failure of equipment while running.  Therefore, it is assumed that there is
a particular failure rate for each component.  Initially, we may not have much failure data for a
component, and our (epistemic) uncertainties in the value of the failure rate will be large.  After
we collect a large enough sample of failure data, we can get a very good estimate of the
failure rate, i.e., the epistemic uncertainties in the value of the failure rate will be small.  The
epistemic uncertainties are quantified using probability distributions (see Appendix A).  Figure
4 shows how, in instance, the distributions are narrowed, i.e., the uncertainties are reduced,
when additional information is collected.  (N represents the number of observed failures and T
represents the period of observation in hours.)   The method for generating these distributions,
given data, is discussed in the next section.

Figure 4 - Reduction in Epistemic Uncertainty with Increased Data

The answers to the first three questions posed at the beginning of this paper are therefore as
follows.  (1) The distribution in Figure 1 quantifies the analyst’s uncertainties in the value of the 
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parameter λ (which represents either CDF or LERF).  Specifically, the integral of the curve
(which is a probability density function) between any two limits, say λ 1 and λ 2, gives the
probability that λ lies in the range (λ 1,λ 2).  (2) These uncertainties are epistemic; they arise
from the analyst’s imperfect state of knowledge regarding the true value of λ.  (3) CDF and
LERF (which are typically computed in PRAs using conventional event tree/fault tree analysis)
are frequencies (as defined earlier in this paper); they are parameters that quantify aleatory
uncertainties in observable variables, e.g., the time to a core damage event.  There are, of
course, generally epistemic uncertainties in their values.  

Figure 5 shows how these two types of uncertainty can be represented in the case of such
variables as event occurrence times.  (An analogous representation can be developed for
variables representing the number of events in a given time period.)  The heavy curves (solid
and dashed) are the cumulative probability distributions quantifying the aleatory uncertainties
in the event occurrence time.  The light curve crossing these heavy curves is the probability
density function quantifying the epistemic uncertainties in λ; it represents the same distribution
as that illustrated in Figure 1.  As shown by Equation (2), the aleatory distributions are
conditioned on the value of λ; the four curves shown correspond to the 5th percentile (λ05),
median (λ50), mean (<λ>), and 95th percentile (λ95) values of λ.  Note that PRAs typically
display results in the form of Figure 1 and not Figure 5; the aleatory uncertainties in the
observable variable are assumed to be understood.

It should also be noted that fundamentally, as discussed by a number of authors (e.g., see
Apostolakis, 1999) and noted in Appendix A, there is only one kind of uncertainty.  Why does
PRA distinguish between “aleatory” and “epistemic” uncertainties?  The answer is due to the
fact that PRA is used to support decision making; the distinction can be important for both
interpreting the PRA output, and deciding what to do with this output.  This is discussed in
Appendix B.

Figure 5 - Representation of Aleatory and Epistemic Uncertainties in Event Occurrence Time
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Uncertainty Analysis in PRA

Current PRAs typically use two kinds of models to address aleatory uncertainties.  The first,
which is applied to events occurring over time (e.g., failures of already operating pumps), is the
Poisson distribution already discussed.  The second, which is applied to events occurring as
the immediate consequence of a challenge (e.g., failures of standby pumps to start on
demand), is the binomial distribution.  This distribution quantifies the likelihood of outcomes
resulting from a Bernoulli (or “coin flip”) process.  It is given by:

(4){ }P N
R N R

R N RR failures in N demands|φ φ φ=
−

− −!
!( )!

( )1

where φ is the probability of failure for a single demand.  It can be seen that mathematically, φ
plays the same role as λ; it is just a parameter characterizing a distribution.  It can be shown
that as the number of trials gets very large, the relative frequency of failures, R/N, approaches
φ.  Thus, φ can be interpreted as the fraction of times failures will occur in the long run.

Using the various λ’s and φ‘s corresponding to the different components included in the PRA
model, the CDFs and LERFs associated with various event sequences, as well as the overall
CDF and LERF, can be computed.  Symbolically,

(5)
( )

( )
CDF f

LERF f

=

=
1

2

λφ

λφ

,

,

To quantify the epistemic uncertainties in CDF and LERF, the epistemic uncertainties in the λ’s
and φ’s are propagated through f1 and f2.  This is currently done on a routine basis using
sampling schemes (e.g., direct Monte Carlo sampling).

The quantification of the uncertainties in the λ’s and φ’s involves the collection and
interpretation of a variety of forms of evidence (e.g., model predictions, expert opinion,
empirical data), and the application of an appropriate estimation procedure that uses this
evidence.  Formally, the estimation procedure involves the application of Bayes’ Theorem. 
The general form of this theorem is:

(6)1
0

0
π θ θ π θ

θ π θ θ
( | ) ( | ) ( )

( | ) ( )
E L E

L E d
=
∫
Θ

where θ is the vector of parameters to be estimated; E is the evidence; L(E|θ) is the likelihood
function, i.e., the probability of observing the evidence if is known; π0(θ) is the prior distribution
for θ, i.e., the probability distribution for θ prior to observing the evidence; and the denominator
on the right hand side of the equation is just a normalization constant.



8

While it may appear to be complicated, application of Equation (6) is straightforward in many
practical cases.  Consider the situation where we are estimating the failure rate (frequency) of
a component, λ, and the evidence consists of an observation of R failures in a specified time
interval T.  The likelihood function is then the Poisson distribution as given by Equation (1);
removing constants that appear in the numerator and denominator, Bayes’ Theorem becomes:

(7)1
0

0
0

π λ λ π λ

λ π λ λ

λ

λ

( | , ) ( )

( )

R T e

e d

R T

R T

=
− ⋅

− ⋅
∞

∫

which has analytical solutions for some forms of the prior distribution, and which can be solved
numerically using simple tools (e.g., spreadsheets or equation solving software) for arbitrary
forms of the prior distribution.  (The development of the prior distribution requires judgment,
especially in the case where the data are sparse.  Practical approaches are discussed in the
paper by Siu and Kelly which is included in the list of references at the end of this paper.  It is
worth noting that for reasonable prior distributions, the precise shape of the distribution is
unimportant when large amounts of data are available.)

It is important to observe that the likelihood function represents the aleatory model for the
observable variable.  In the above case, the observable variable (R), is assumed to be the
result of a Poisson process; the Poisson distribution (which has the single parameter λ) is then
appropriate for the likelihood function.  To expand on this point, consider a slightly more
complicated case where the observable variable, denoted by C, is assumed to be: a) random,
and b) the result of a lognormal process, i.e., the aleatory uncertainties in C are quantified by a
lognormal distribution.  Assume an experiment is performed which results in N observations of
C.  Bayes’ Theorem is then

    (8)( )
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where µ and σ are the two parameters of the lognormal distribution and are related to the
mean and variance of C.  This equation can be solved using relatively simple software tools. 
An example is provided in Appendix C.

When the evidence is in more complicated forms (e.g., expert opinions), the use of Bayes’
Theorem is not as straightforward.  In such cases, current PRAs generally employ less formal 
procedures, e.g., subjective estimation of the probability distribution based on considerations
of sample averages and ranges.  Bayes’ Theorem is an important tool for ensuring that the
analyst updates his/her state of knowledge concerning the uncertain parameter in a manner
consistent with the laws of probability, but it is just a tool.
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Summary Points - Uncertainty Concepts

C Uncertainties in a variable are treated in PRAs as being aleatory when the variable is
assumed to be the result of a random process, i.e., repeated trials of a thought
experiment will lead to a distribution of values for the variable. 

C Uncertainties in a variable are treated in PRAs as being epistemic when the variable is
assumed to be deterministic, i.e., repeated trials of a thought experiment will lead to a
single value for the variable. 

C The distinction between aleatory and epistemic uncertainties is not always clear;
drawing the line between the two is generally a modeling decision.

C PRAs generally address aleatory uncertainties in the behavior of model elements
through the λ and φ parameters.  The aleatory uncertainties in overall plant behavior are
addressed using the CDF and LERF parameters; these are functions of the λ’s and φ’s.

C The epistemic uncertainties in the λ’s and φ’s are propagated through the PRA model to
develop epistemic distributions for CDF and LERF.

C The formal approach for quantifying epistemic uncertainties in the λ’s and φ’s (or any
other model parameter) involves the use of Bayes’ Theorem.  This is a straightforward
process for many practical situations, and can be accomplished using spreadsheets or
simple equation solving software.



4Judgment comes in when we are deciding what PFM endpoint is equivalent to core
damage.  Some possible endpoints are, in order of decreasing conservatism and increasing
PFM uncertainty: RV crack initiation, RV through-wall crack, and catastrophic RV failure (i.e.,
failure of the RV beyond the capacity of available makeup).  The general discussion in this
paper is intended to cover all of these endpoints; the specific examples employed focus on
crack initiation.  

10

Integrated PTS Analysis

To develop estimates of CDF and LERF associated with PTS, we know that thermal hydraulic
(T/H) uncertainties and probabilistic fracture mechanics (PFM) uncertainties must be
addressed in an integrated PRA framework.  But how should this be done?  Which
uncertainties are aleatory?  Which are epistemic?  How should the results be presented? 
What does this mean in terms of the computational process used to generate the results?

This section proposes a particular approach for dealing with these questions.  As indicated at
the beginning of this paper, the intent is to provide an initial view and thereby stimulate
constructive discussion.  A final position cannot be developed without input from the PFM and
T/H domain experts.

The Problem

Figure 6 shows a highly simplified view of the PTS problem with respect to the issue of CDF. 
(The discussion for LERF follows along very similar lines.)  Using conventional PRA tools (e.g.,
event trees and fault trees), the scenarios resulting in PTS-related challenges to a particular
reactor vessel (RV) at a particular plant can be identified and their frequencies (denoted in the
figure by λi, i = 1,2,...,n) estimated.  These frequencies characterize the aleatory uncertainties
associated with the occurrence of the PTS challenge scenarios. Conventional PRA tools (e.g.,
Monte Carlo or Latin Hypercube sampling) can also be used to generate distributions
quantifying the epistemic uncertainties in these frequencies.  

Consider the ith PTS challenge scenario defined by the PRA.   Using PFM models and
judgment,4 we can estimate φi, the conditional probability of vessel failure and core damage
due to PTS, given the ith scenario.  The parameter φi is a measure of the aleatory
uncertainty in the response of the vessel to the PTS challenge scenario.  It is perhaps
best interpreted as the fraction of times PTS-induced core damage will be observed, given a
large number of challenges of the type defined by scenario i.  Care needs to be taken in
defining which PFM uncertainties contribute to φi, and which contribute to the epistemic
distribution for φi.  

Before discussing a proposed treatment of aleatory and epistemic uncertainties in PFM which
is based on the discussions provided earlier in this paper, we first need to address the
question of why there should be a φi term at all.  In other words, is the behavior of the reactor
vessel deterministic, given the ith PTS challenge scenario?
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Figure 6 - Simplified PRA Representation of PTS Problem

I believe that variability in the response of the reactor vessel should be expected.  This
variability certainly arises because of the manner in which the PRA defines the PTS challenge
scenarios.  It may also arise due to modeling simplifications in the PFM analysis, even for such
relatively well defined problems as crack initiation.

Consider first the issue of scenario definition.  The PTS challenge scenarios identified by
conventional PRAs are defined in terms of initiating events (e.g., steam line breaks) and
successes or failures of mitigating equipment and actions (e.g., isolation of main feedwater on
demand).  Two important modeling approximations in this characterization are: a) all
equipment and operator behaviors are treated as being binary (either successful or failed), and
b) the timing of events is important only to the extent that it affects the definition of “success”
or “failure.”  The T/H response of the plant to the initiating event is clearly affected by these
issues.  

For example, a PRA might treat two states of a pressurizer PORV block valve: the block valve
closes (on demand), and the block valve fails to close.  If the block valve only closes midway or
takes too long to close, the PRA might (depending on the precise success criteria employed)
treat these as being equivalent to a situation where the valve gate doesn’t move at all. 
However, these different situations could lead to different temperature and pressure transients,
and, therefore, different reactor vessel responses.  

As another example, each initiating event treated in the PRA actually represents a set of
potential accident initiators.  For instance, the PRA groups steam line breaks of different sizes
and locations.  Again, these differences could lead to different temperature and pressure
transients and different reactor vessel responses.  

In general, it can be seen that each PRA-defined scenario actually represents a bundle of
possible T/H scenarios.  Even if reactor vessel behavior were a deterministic function of the
T/H scenario, an experiment involving multiple occurrences of a particular PRA-defined PTS 



5All references to the “current PFM approach” refer to the proposed Method 2
presented at the joint NRC-industry meeting on PTS held on April 20, 1999 and discussed in
subsequent NRC meetings.

6The estimation process is assumed to include the quantification of epistemic
uncertainties.

7A decision needs to be made whether some reactor vessel endstate is going to be
used to represent core damage, or if additional analysis between, say, through-wall crack
propagation, and core damage is to be performed.
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challenge scenario would be expected to lead to multiple outcomes due to variations in the T/H
scenarios included in the PRA scenario.

Next consider the behavior of the reactor vessel.  It is for the PFM analysts to decide if there
can be any significant variations in the response of a specified reactor vessel to a well-defined
T/H scenario.  However, if the current PFM approach5 includes models for material behavior
that do not explicitly account for all potentially important factors (see the scatter data for KIc),
then vessel behavior could vary, even if all PFM model input parameters (including those
defining the T/H scenario) are fixed.

Based upon the preceding arguments, it appears that the concept of aleatory uncertainties in
the behavior of the reactor vessel when subjected to a PTS-challenge scenario (as defined by
the PRA) is valid.  The term φi  is therefore relevant and needs to be estimated.

Analysis Interfaces

Before discussing a proposal concerning how φi is to be estimated, a short discussion on the
interfaces between the PRA, T/H, and PFM analyses is useful.  This will provide a context for
the discussion on estimation.

Figure 7 outlines a conceptual approach for defining the interfaces.  In this approach, a PRA
analysis (with some input from T/H analyses, e.g., regarding system success criteria) defines
the PTS challenge scenarios in terms of initiating events (IEs) and associated
equipment/operator successes and failures, and then estimates the frequencies (λi) of these
scenarios.6  These PRA scenario definitions and frequencies are provided to a T/H analysis. 
For each PRA scenario, a set of representative T/H scenarios is defined (with some additional
input from the PRA analysis, e.g., regarding the likelihood of various failure times).  Each
representative T/H scenario, which is chosen to represent a bundle of similar T/H scenarios, is
assigned an appropriate fraction of the PRA scenario frequency, and is analyzed using an
appropriate T/H model.  (Note that the effect of aleatory uncertainties in key T/H parameters, if
any, should be factored into the T/H scenario frequencies; the effect of epistemic uncertainties
in key parameters should be addressed through the epistemic uncertainties in both the
scenario frequencies and the T/H output for each T/H scenario.)  The results of each T/H
scenario analysis, together with an estimate of the scenario frequency, are then provided to a
PFM analysis.  The PFM analysis then generates an estimate of φi.7  The φi are then combined
with the λi in an integrated assessment of CDF (shown) and LERF.
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This approach appears to be nearly identical to that discussed at the April 30, 1999 and June
9, 1999 NRC meetings on PFM/PRA integration.  Two minor differences are as follows.  First,
the proposed approach requires a slightly different aggregation of results (on a PRA scenario
basis, rather than on an overall basis).  Second, it requires that PRA scenario frequencies be
explicitly allocated to the constituent T/H scenarios in a manner consistent with the PRA
model.  

Proposed Approach for Estimating φi

The PFM variables and parameters considered as being uncertain in the current approach to
PTS are listed in Table 1.  (This table is based on discussion at the June 9, 1999 NRC meeting
on PFM/PRA.)  My understanding is that the uncertainties in the variables and parameters
listed as being “inside FAVOR,” as well as the uncertainties in the T/H scenarios (each T/H
scenario is effectively assigned a probability), are currently being addressed via Monte Carlo
simulation in two ways (see Figure 8).  First, most of the Table 1 variables and parameters
(e.g., copper content, fluence, flaw size) are sampled to characterize a particular reactor
vessel.  Second, the possible T/H scenarios are sampled to estimate what fraction of these
scenarios will lead to the failure of the given vessel.  As shown in Figure 8, the first (reactor
vessel-related) round of sampling effectively treats the sampled variables as being
deterministic; the associated uncertainties are therefore epistemic.  The second (T/H-related)
round of sampling effectively treats the sampled variables as being random; the associated
uncertainties are therefore aleatory.  (Note that in Figure 8, the “φ” and “PFM” terms correspond
to the “λ” and “φ” terms, respectively, of this paper.)

Table 1 - Uncertain Variables and Parameters in PFM

Inside FAVORa Outside FAVORa

copper content weld residual stresses

nickel content cladding thickness

neutron fluence stress-free temperature

flaw size flaw size distributionsb

flaw location flaw densityb

RTNDT margin T/H pressure-temperature curveb

reactor vessel temperature

reactor vessel stress

KI

KIc scatter

aBased on current version of FAVOR
bMight be able to move inside FAVOR without modifying loading/stress intensity libraries
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8Random variables whose distributions are uncertain have both aleatory and epistemic
uncertainties.

9The “value of a continuously distributed variable at a point in the reactor vessel” is
understood to mean the average value in a suitably small subvolume about that point.
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This section of the paper re-examines the variables and parameters listed in Table 1 in light of
the philosophical discussion provided in the first section of the paper. It then provides
recommendations as to whether their uncertainties should be categorized as being aleatory,
epistemic, or both.8  It concludes with a discussion of the implications of any changes in
categorization on FAVOR.

Modeling Observations and Assumptions Concerning the Reactor Vessel

As mentioned early in this paper, the distinction between aleatory and epistemic uncertainties
is, to some degree, a matter of modeling.  The discussion therefore starts with some modeling
observations and assumptions that will be used to provide a basis for the discussion on
uncertainty-based categorization.

First, it should be recognized that, under the current PTS program, analyses will be performed
for a set of specified plants and reactor vessels.  Thus, the although the results will be used in
developing a generic screening criterion, the analyses themselves are not generic.

Second, looking at a specific reactor vessel, the vessel’s material properties are essentially
deterministic.  In other words, the concept of “the true value” for such variables as the copper
content at a specified point9 is meaningful, whether or not there are problems with our current
ability to reliably measure those variables.  Other reactor vessel spatially dependent physical
characteristics that can be viewed as being deterministic on a pointwise basis are the weld
residual stresses, the vessel cladding thickness, and flaws in the vessel.  Regarding the latter,
it appears that the flaws in the reactor vessel are those created during manufacturing, i.e.,
non-catastrophic operational transients cannot initiate or propagate flaws with any significant
likelihood.  If this observation is incorrect, then random variations in the timing and magnitude
of such transients would then lead to random variations in flaw density, size, and location.  

Regarding external influences on the reactor vessel prior to the PTS challenge, it seems
reasonable to assume that the spatially dependent neutron fluence can be treated as being
deterministic.  (There are random fluctuations in neutron flux, but time averaging will tend to
smooth out these fluctuations.)  Regarding external influences during the challenge, it seems
that reactor coolant temperature and pressure can also be treated as being deterministic, i.e.,
that the impact of random fluctuations will be small (due to vessel thermal and mechanical
inertia).

Third, many of the reactor vessel properties and external influences will vary with location
(r,θ,z).  This means, for example, that a sampling of the copper content over a specified vessel
subregion will result in an empirical distribution of values for that property.  (This distribution
can be fairly broad and can be multimodal.)  It should be emphasized that the existence of a
sampling distribution reflects aleatory uncertainty in the sampling process.  It does not
necessarily mean that the pointwise values are themselves random.



10In cases where the assessor chooses to use the sampling distribution directly as a
representation of his/her state of knowledge, they are numerically identical.
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Proposed Categorization of Uncertain Variables and Parameters

The following proposals concerning the categorization of the variables and parameters listed in
Table 1 are based upon the preceding observations and assumptions

! Copper Content: Epistemic

In the current PFM approach, which is done on a subregion basis, the copper content is
sampled once per flaw.  This is done because the concern is not with the average
copper content in the entire subregion (whose characteristic dimensions can range
from several centimeters to even a few meters), but rather with the copper content local
to the flaw (and at the time of the PTS challenge).  The sampling is done using a
distribution derived from empirical data.  As noted earlier, the procedure essentially
treats the uncertainties in copper content as being epistemic in nature.

Both the flaw location and the local copper content are, in principle, deterministic. 
(They are essentially determined when the vessel is manufactured.)  Thus, it seems
reasonable (i.e., consistent with the principles described in the first part of this paper) 
to treat the uncertainty in the copper content as being epistemic.  Sampling based
distributions can be used to quantify epistemic uncertainties,10 but they should not be
used as aleatory distributions. Note that the current assumption that the uncertainty
distribution for copper content is Gaussian may need to be revisited; the investigation
can be done in a straightforward manner using standard statistical tools.

! Nickel Content: Epistemic

See the discussion for copper content.

! Neutron fluence: Epistemic

In the current PFM approach, the neutron fluence is sampled once per flaw (to support
the calculation of the extent of embrittlement near the flaw).  The sampling is done
using a distribution derived from expert judgment concerning the accuracy of neutronics
calculations.  The procedure essentially treats the uncertainties in fluence as being
epistemic in nature.

As argued earlier, although there are random fluctuations in the neutron flux (and
therefore fluence), the time averaging used to calculate the fluence should tend to
reduce the impact of these fluctuations.  It therefore appears reasonable to treat the
uncertainty in the fluence as being epistemic in nature.  Expert judgment, which could
involve a more detailed treatment which explicitly addresses the key sources of
uncertainty, can be used to quantify the uncertainty.
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! Flaw size: Epistemic

In the current PFM approach, uncertainties in the crack geometry are effectively treated
being treated as being epistemic in nature.  Since non-catastrophic operational
transients apparently have little effect on flaw initiation or growth, it appears that the
geometry of a given flaw should be deterministic.  (It is essentially determined when the
vessel is manufactured.)  Therefore, it appears reasonable to treat the uncertainties in
flaw size as being epistemic.  As is the case with copper and nickel content, sampling
based distributions can be used to quantify the epistemic uncertainties in flaw size, but
they should not be used as aleatory distributions. 

! Flaw location: Epistemic

See the preceding discussions on copper content and flaw size.

! RTNDT margin: Epistemic

In the current PFM approach, this term is used to account for uncertainties in both the
initial, unirradiated value of RTNDT, i.e., RTNDT0, and uncertainties in the correlation used
to predict the neutron radiation-induced shift in RTNDT, i.e., ∆RTNDT.  As with most of the
other variables and parameters discussed, the uncertainties are treated as being
epistemic in nature.

This treatment appears to be reasonable.  The parameter RTNDT0 is derived
experimentally under a specified protocol.  For the purposes of the PTS analysis, it
appears that it can be considered as a material property.  This means that the
uncertainties in RTNDT0 can be treated as being epistemic.  For similar reasons, the
parameter ∆RTNDT can also be considered as a material property, and its uncertainties
can be treated as being epistemic in nature.  

Note that the comparison of correlation results for ∆RTNDT with experimental data will
lead to a sampling distribution for error in the correlation (due to the effect of factors not
included in the correlation).  This sampling distribution can be used to develop the
epistemic distribution for ∆RTNDT, but it should not be taken to mean that ∆RTNDT at a
given point (the location of the flaw) is itself aleatory.

Also note that the correlation for ∆RTNDT requires values of copper content, nickel
content, and fluence, all of which are uncertain.  Estimation of the uncertainties in
∆RTNDT due solely to modeling needs to be done recognizing these uncertainties. 
Bayesian methods have been developed to address this problem.

! Reactor vessel temperature: Deterministic

In the current PFM approach, the spatial distribution of temperature inside the reactor
vessel is computed deterministically based on the temperature-time curves provided by
the T/H analysis.  (Presumably, the heat transfer coefficients and material thermal
properties, e.g., thermal diffusivities, are assumed to be constant.)  Uncertainties in the 
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T/H input will lead to uncertainties in the vessel temperature, but there are no other
sources of uncertainty considered.  

Unless the effect of uncertainties in the heat transfer coefficients and the material
thermal properties are believed to be important, there is no need to perform any
additional sampling.

! Reactor vessel stress: Deterministic

In the current PFM approach, the spatial distribution of stress inside the reactor vessel
is also computed deterministically (based on a number of factors, including the time-
dependent temperature profile, the vessel geometry, and the weld residual stresses.) 
Unless there are any significant uncertainties in these calculations, there is no need to
perform any additional sampling.

! KI: Deterministic

This variable is currently computed deterministically as a function of other variables. 
Unless it is postulated that the computation process itself introduces additional
uncertainties, there is no need to perform any additional sampling.

! KIc scatter: Aleatory and Epistemic

In the current PFM approach, the scatter in KIc is sampled once per time step for each
flaw.  (The sampling distribution is based on a comparison of KIc predictions with
experimental data.)  Based on when the sampling is done (KIc is a function of local
temperature, which is a function of the thermal hydraulic transient), it appears that the
uncertainties in KIc are being treated as being aleatory in nature.

At first glance, it appears that KIc, which is computed as a function of T - RTNDT, is a
temperature-dependent material property and should therefore be deterministic (at a
given point).  However, consider the crack initiation model which uses KIc.  This model
predicts crack initiation whenever KI, which is a computed function of a number of
factors (e.g., crack geometry and applied stress), exceeds KIc.  Applying this model to
experimental results, it would not be surprising for the model would be correct for some
trials and incorrect for others.  (The graph showing variability in KIc for fixed values of T
- RTNDT may be an indication of this aleatory uncertainty.  Note that models, by
definition, are simplified representations of the real world, and generally don’t address
all factors that can potentially affect the results.)  Thus, although the uncertainties in KIc
are epistemic, there are aleatory uncertainties in the results of the model which uses
KIc. 

Note that in a mathematically analogous problem involving aging-related failures of
piping, Apostolakis (1999) argues that model uncertainty should be treated as being
epistemic in a PRA.  It is currently planned that a small task group reinvestigate the
treatment of the scatter in KIc.  The task group will need to determine if the current PFM
distribution for KIc appropriately addresses the model uncertainty and how epistemic
uncertainties in the model should be addressed. 
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! Weld residual stresses: Epistemic

In the current PFM analysis, these are treated as being deterministic.  (They affect the
finite element stress calculations, and therefore cannot be easily incorporated into the
current computational scheme used by FAVOR to address uncertainties.)  

Since weld residual stresses are essentially determined at the time of vessel
manufacture, the uncertainties in these stresses are epistemic in nature.  Given the
difficulty of addressing these uncertainties within FAVOR, a scheme for doing this
outside of FAVOR is outlined later in this section.

! Cladding thickness: Epistemic

In the current PFM analysis, this is treated as being deterministic.  (It affects the finite
element stress calculations, and therefore cannot be easily incorporated into the
current computational scheme used by FAVOR to address uncertainties.)  

Since the vessel dimensions (including the cladding thickness) are essentially
determined at the time of vessel manufacture, the uncertainties in this thickness (for a
given subregion) are epistemic in nature.  Given the difficulty of addressing these
uncertainties within FAVOR, a scheme for doing this outside of FAVOR is outlined later
in this section.

! Stress-free temperature: Epistemic

In the current PFM analysis, this is treated as being a deterministic parameter. 
Presuming that, for a given reactor vessel, there is a temperature at which the stress
between the cladding and the vessel base material is zero, it appears that this
treatment is reasonable.  The uncertainties in the parameter are, therefore, epistemic. 

! Flaw size distributions: Epistemic

In the current PFM analysis, uncertainties in the flaw size distribution (e.g., regarding its
shape and parameter values) are not treated.  Since, as noted earlier, the uncertainties
in the flaw characteristics are epistemic in nature, the uncertainties in the distribution of
characteristics is also epistemic.  From a computational point of view, the proposed
treatment of flaw characteristics accounts for uncertainties in the flaw size distribution;
no additional treatment is needed.

! Flaw density: Epistemic

Following the discussion of other flaw characteristics, the flaw density is determined at
the time of vessel manufacture and the uncertainties in this density are epistemic.

! T/H pressure-temperature curve: Aleatory and Epistemic

In the current PFM analysis, T/H uncertainties are used directly in the computation of
the φi; this procedure treats the T/H uncertainties as being aleatory.



11For example, as noted earlier in this paper, the term “stochastic” is typically used in
the PRA literature to refer to random or aleatory issues.  My understanding is that the process
of “stochastically generating vessels” actually addresses epistemic uncertainties.  I recommend
that future descriptions of the PFM analysis use the terminology of this white paper.
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The proposed treatment of T/H uncertainties has been discussed earlier in this paper. 
It recognizes that there is an aleatory component (quantified by the frequency of the
parent PRA scenarios and the fraction of this frequency associated with the bundle of
T/H scenarios modeled through the use of a single representative T/H scenario) and an
epistemic component (quantified by distributions for the T/H scenario frequencies and
the conditional T/H model output).

Table 2 summarizes the results of the preceding discussions on the categorization of uncertain
PFM variables and parameters.  In general, the conceptual treatment of uncertainties in the
variables and parameters used by the current PFM approach appears to be consistent with the
principles described in the first part of this paper (although a PRA-based description would
describe the process somewhat differently11).  The impact of changes in categorization are
discussed in the following section.

Implications for FAVOR

Table 2 shows that, from the standpoint of PFM uncertainty analysis, four classes of
variables/parameters have been identified.

1. Variables/parameters which do not need to be explicitly included in sampling schemes
used to perform the uncertainty analysis.  These are generally deterministic functions of
other uncertain variables/parameters.  Uncertainties in these will be automatically dealt
with as part of the uncertainty analysis process.

2. Variables/parameters which have both aleatory and epistemic uncertainties.  The
epistemic uncertainties can be addressed within FAVOR.

3. Variables/parameters which have epistemic uncertainties.  The epistemic uncertainties
can be addressed within FAVOR.

4. Variables/parameters which have epistemic uncertainties.  The epistemic uncertainties
cannot be addressed within FAVOR (at least without considerable restructuring of the
code).

The discussion in the previous section and Table 2 show that the current PFM categorization
of variables and parameters is generally reasonable.  Furthermore, Figure 8 shows that the
computational approach used by FAVOR appropriately distinguishes between aleatory and
epistemic uncertainties.  Thus, the following points, which address recommended changes in
the PFM uncertainty analysis, do not appear to require significant changes in the FAVOR
code.
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Table 2 - Recommendations for Categorization of Uncertain Variables and Parameters in PFM

Variable/Parameter Recommended Uncertainty Categorya

copper content epistemic

nickel content epistemic

neutron fluence epistemic

flaw size epistemic

flaw location epistemic

RTNDT margin epistemic

reactor vessel temperature deterministicb

reactor vessel stress deterministicb

KI deterministicb

KIc scatter aleatory and epistemic

weld residual stresses epistemic

cladding thickness epistemic

stress-free temperature epistemic

flaw size distributions epistemicc

flaw density epistemic

T/H pressure-temperature curve aleatory and epistemic

aUnderline indicates a change from the current PFM approach.
bVariable is a deterministic function of other, uncertain variables; no additional treatment of
uncertainty is required.
cUncertainties in flaw size distribution should be addressed as part of the uncertainty analysis
for flaw size.

! Category 2 Variables and Parameters: KIc scatter and T/H temperature/pressure

In general, the parameters of aleatory distributions are uncertain.  If these uncertainties
are significant (methods for quantifying these uncertainties were discussed in the first
section of this paper), they need to be addressed in the sampling process.  This can be
done in a very straightforward manner within the FAVOR code.

Assume, for example, that the distribution of KIc is lognormal with uncertain parameters
µ and σ.  At the time FAVOR is sampling the reactor vessel parameters (e.g., copper
content, which have epistemic uncertainties), it should also sample a value for µ and a
value for σ.  Then, when FAVOR is actually sampling for KIc, it should use the sampled
values of µ and σ in defining the lognormal distribution for KIc.
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! Category 4 Variables and Parameters: weld residual stresses, cladding thickness, and
stress-free temperature 

Although the epistemic uncertainties in these variables and parameters are
fundamentally of the same nature as the epistemic uncertainties in other variables and
parameters, it appears for computational efficiency reasons that they should be
addressed outside of the FAVOR code.  It appears that this can be done relatively
simply using Latin Hypercube Sampling (LHS) techniques; LHS is used to define sets
of inputs (with appropriate probability weights) that are then provided to FAVOR.

Summary Points - Integrated PTS Analysis

C The proposed approach for integrating PRA, T/H, and  PFM analyses described in this
paper (see Figure 7) is nearly identical to that discussed at the April 30, 1999 and June
9, 1999 NRC meetings on PFM/PRA integration.  Two minor differences are: 1) the
proposed approach requires the aggregation of results on a PRA scenario basis, rather
than on an overall basis; and 2) the approach requires that PRA scenario frequencies
be explicitly allocated to the constituent T/H scenarios in a manner consistent with the
PRA model.  

C Although it doesn’t use the same terminology, the uncertainty analysis framework
employed by the current PFM approach correctly distinguishes between epistemic and
aleatory uncertainties.

C The current PFM categorization of uncertain PFM variables and parameters (in terms of
whether the uncertainties are epistemic, aleatory, or both) appears to be generally
reasonable.  A few changes in categorization are recommended (see Table 2).  Some of
these changes can be addressed within the current FAVOR code; others will need to be
addressed outside of the code.

C The quantification of aleatory uncertainties in KIc and of the epistemic uncertainties in
this distribution needs to be looked at further.

C The current quantification of uncertainties for many of the PFM variables and
parameters can be updated using relatively simple tools.
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12Although there are other definitions of probability, e.g., the “frequentist” definition
which takes the probability to be the limiting ratio of successes to trials in an infinite series of
repeatable, identical experiments, the subjectivist definition is appropriate for use in PRA, as it
is an integral part of current theories on decision making under uncertainty.

13A proposition is a statement that is either true or false.
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Appendix A - Probability Definitions and Concepts

Probability

Probability is a subjective (internal) measure of likelihood.12  Thus, P{A} is the quantity that
measures the assessor’s degree of certainty (or uncertainty) as to the truth of proposition A.13 
P{A|B}, the conditional probability of A, given B, measures the assessor’s belief that
proposition A is true, given (assuming) that proposition B is true. Some important observations
are as follows:

1. Although there is no “true” or “correct” probability for a given proposition, useful
probabilistic assessments are not arbitrary; they must adhere with the rules established
by the calculus of probabilities.  It turns out that this requirement forces convergence of
subjective and frequentist probabilities when there is a large amount of data. 

2. For a probability to be meaningful, the proposition must be carefully defined.  Lack of
clarity can lead to misunderstandings and misuses of probabilistic analysis results.

3. All probabilities are conditional; they are all based on the assessor’s current state of
knowledge concerning the proposition in question.  As that state of knowledge
changes, the (conditional) probability of the proposition changes as well.

4. The definition of probability does not distinguish between “aleatory” and “epistemic”
uncertainties.  Uncertainties of both types contribute to the overall probability. 
However, they contribute in different manners, as illustrated by an example at the end
of this appendix.

Probability Distributions

Let X be a continuous variable (e.g., the copper content at a specific point in the reactor
vessel) whose precise value is unknown.  Some generic propositions of interest are:

{ }X x≤
{ }X x>
{ }x X x x≤ < + ∆

where x is a given value.  The probabilities of these propositions being true clearly can change
as functions of x.  Because of their usefulness, these functions have been given specific
names:
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Cumulative Distribution Function (CDF): F x P X x( ) { }≡ ≤

Complementary Cumulative Distribution Function (CCDF): F x P X x( ) { }≡ >

Probability Density Function (pdf): f x P x X x x
xx

( ) lim { }≡ ≤ < +
→∆

∆
∆0

Some useful relationships following from these definitions and the axioms of probability are
given in Table A.1.

It is important to observe that all of the above distribution functions are probabilities which
quantify the assessor’s subjective beliefs as to whether the true value of X lies in a specified
range.  Thus, for example (see Figure A.1), a highly peaked pdf indicates that the assessor is,
correctly or incorrectly, very confident in his knowledge about X; a more shallow pdf indicates a
lower level of confidence.

Figure A.1 - Probability Density Functions (pdfs) and Confidence

It should also be noted that neither the definitions of distributions nor the relationships in Table
A.1 are dependent on the particular form of the distribution.  This means that, in principle,
probability distributions do not have to members of any particular parametric family, e.g.,
normal (Gaussian), lognormal, gamma, Weibull, or exponential.  However, for mathematical
and computational convenience, it is often useful to approximate the assessor’s distribution
using a particular parametric form.  Specific forms and their characteristics (e.g., mean value,
variance, key percentiles) can be found in numerous handbooks and textbooks.

The above discussion focuses on a single uncertain variable.  Similar propositions and
associated distribution functions can be developed for multiple uncertain variables, albeit with
more complexity.  In dealing with multiple variables, care needs to be taken that dependencies
between the variables are accounted for because, in general,

P a X b c Y d P a X b P c Y d{ , } { } { }≤ < ≤ < ≠ ≤ < ⋅ ≤ <



14C is clearly a function of position; its explicit dependence on (r,θ,z) is not shown for
notational convenience.
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Table A.1 - Some Useful Relationships Between Distribution Functions

F x F x( ) ( )= −1

F x f x dx
x

( ) ( ' ) '=
− ∞
∫

P a X b F b) F a) f x dx
a

b

{ } ( ( ( ' ) '≤ < = − = ∫

f x dF x
dx

( ) ( )=

___________________________________________________________________________

On The Meaning of Probability Distributions: Examples

In probabilistic risk assessments (PRAs) and other probabilistic analyses, probability
distributions are routinely used to represent the uncertainties in key variables and parameters. 
However, the meaning of each distribution, which is directly related to the specific proposition
addressed by the distribution, is not always clearly specified.  This can lead to
misunderstandings or even misuses of the distributions and, therefore, of the analysis results. 

Example 1: Reactor Vessel Copper Content

Define the variable C as the copper content (in weight percent) at the location of a specific flaw
in a particular subregion of the vessel.14  From an engineering analysis perspective, it is
reasonable to assume that there is a fixed, “true value” of C, whether or not there are problems
with our current ability to reliably measure C.  The proposition of interest, therefore, is that the
true value of C lies in a specific range of values, e.g., (c,c+∆c).

For the sake of this simple example, assume that, following some data analysis (see Appendix
C for example calculations), the assessor determines that his state of knowledge regarding C
is adequately represented by a lognormal distribution function with a mean value of 0.20 and a
standard deviation of 0.05.  The pdf is shown in Figure A.2.



15Appendix B provides additional discussion on the treatment of epistemic and aleatory
uncertainties in a probabilistic analysis.
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Figure A.2 - Copper Content Probability Density Function (Example)

Using the properties of the lognormal distribution function, it can be shown that some of the
key percentiles of this distribution are as follows.
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It can be seen that the assessor is very confident (with 95% probability) that the true (but
unknown) value of C is less than 0.291.  It also can be seen, using the third relationship in
Table A.1, that the assessor is very confident (with 90% probability) that the true value of C lies
between 0.129 and 0.291.

Note that the uncertainties modeled by this distribution of C are purely epistemic and should be
treated as such.  If the uncertainties are treated in an analysis as being aleatory,15 this would
imply that C could vary randomly over time (e.g., from pressurized thermal shock event to
event), which contradicts the basic modeling assumption that there is a fixed, true value of C.

Example 2: On Measurement Errors and Epistemic Uncertainties

Consider a situation where the copper content of a particular sample is measured in a series of
tests.  It can be expected that random variations in the measurement process will lead to
random variability, i.e., aleatory uncertainty, in the measurement outcomes, and that this
variability can be represented by a distribution.  Does this mean that the copper content is an
aleatory variable?



A-5

The answer depends on what is meant by “the copper content,” i.e., what is the underlying
proposition.

If the proposition is that the value of the next measurement of copper content falls in some
range, e.g.,  (c,c+∆c), the uncertainty in the truth of this proposition is indeed aleatory.  (This
follows directly from the description of the situation.)  The observed distribution provides a
good indication of what the next measurement might be, as long as key factors (e.g., the test
procedure, the sample itself) are not changed.

On the other hand, if the proposition is that the copper content at some specified (r,θ,z) in a
given reactor vessel falls in some range, then the model of the previous example still holds: the
uncertainties in this copper content are epistemic.  The distribution of measured values for the
sample is evidence which affect the assessor’s distribution for C(r,θ,z), but it is not the
assessor’s distribution.  Even if, as a practical matter, the assessor decides to make his
distribution for C(r,θ,z) numerically identical to the distribution of measured values, his
distribution must be treated in subsequent analyses as being epistemic (rather than aleatory),
or else the analysis will be inconsistent.
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Appendix B - Aleatory and Epistemic Uncertainties

Is It Important To Make The Distinction?

In order to make most effective use of the results of any analysis, it is important that the user
understand the fundamental modeling assumptions underlying the analysis.  In particular, in
the case of a probabilistic risk assessment (PRA), it is important to understand how the
analysis deals with uncertainties that arise because of issues not explicitly modeled and those
that arise because of imperfect knowledge concerning the issues that are explicitly modeled. 
This understanding will affect how the user perceives and uses the analysis results in
subsequent decision making activities. 

Consider a situation where a reactor pressure vessel (RPV) could be subjected to a
pressurized thermal shock (PTS) event.  Assume the PTS event arrival is governed by a
Poisson process and has characteristic frequency λ.  We are uncertain as to whether the RPV
will fail because of a PTS event; the associated conditional probability of failure, given a PTS
event, is φ.  Depending on the interpretation of φ, the analysis user could have very different
pictures of the situation.

Two extreme interpretations are as follows (see Figures B.1 and B.2).

1) The uncertainty quantified by φ arises only because of issues not explicitly modeled
(e.g., causal factors underlying differences in the timing of component actuations and
failures, which, in turn, lead to different thermal hydraulic subscenarios) and is entirely
aleatory.  Under this treatment, if we hypothesize a very large number of PTS events,
we would expect to see RPV failure for a fraction φ of these events. 

2) The uncertainty quantified by φ arises only because of imperfect knowledge regarding
modeled processes (e.g., sparsity and relevance of data for the copper content at a
specific point in the RPV) and is entirely epistemic.  Under this treatment, the RPV will
either fail or it won’t, regardless of the number of challenges.  Thus, for N hypothesized
PTS events, one of two hypotheses will be true: i) there will be N RPV failures, or ii)
there will be N RPV successes.  The likelihood that the first hypothesis is true is φ; the
likelihood that the second hypothesis is true is 1 - φ. 

Under the first interpretation, the expected number of PTS-induced RPV failures in a fixed time
interval T is given by:

E T[ ]#  RPV failures in (0,T)|interpretation 1 = λφ

The probability of N such events is given by:

P T
N e

N
T{ } ( )

!
N RPV failures in (0,T)|intepretation 1 = −λφ λφ

Under the second interpretation, the expected number of events and the probability of N such
events are given by:
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Figure B.1 - Risk Model for Aleatory Interpretation of RPV Conditional Failure Probability

Figure B.2 - Risk Model for Epistemic Interpretation of RPV Conditional Failure Probability
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E T

P T
N

e
N

T

[

{ } ( )
!

#  RPV failures in (0,T)|interpretation 2]

N RPV failures in (0,T)|intepretation 2

=

= ⋅ −

λφ

φ λ λ

It can be seen that if the user only cares about the expected number of events in a fixed time
interval T, both interpretations will lead to the same value: λφT.  However, if the user has a
non-linear consequence function for PTS-induced RPV failure (e.g., if one event is barely
tolerable but two events spell utter doom), the differences in interpretation can make a
difference.

Reinforcing the points raised above, Apostolakis (1999) points out that the distinction between
aleatory and epistemic uncertainties can make a difference at the detailed technical analysis
level.  In particular, he questions the concept of a failure rate for components when the failure
mechanisms are essentially deterministic (albeit, with uncertain governing parameters).  The
problem involves the passive failure of an aging pipe under steady-state load conditions, and
corresponds mathematically to the situation shown in Figure B.2.

In general, it might be expected that there are aleatory and epistemic contributions to the RPV
conditional failure probability.  Operational issues in dealing with such situations are discussed
in the following section.

Treating Aleatory and Epistemic Uncertainties

For situations where there are aleatory and epistemic contributions to uncertainty, these
contributions need to be separated for the reasons discussed above.  In our example of the
PTS-induced RPV failure, this separation is shown in Figure B.3.  The aleatory contribution (φ‘)
is dealt with in the event tree (i.e., as a “conditional split fraction”).  The epistemic uncertainty in
φ‘ is treated when epistemic uncertainties are propagated through the event tree model. 
Neglecting the epistemic uncertainties in λ for simplicity, the expected number of failures and
the probability of N events are given by:

E T d T E

P T
N

e d
N

T

[ ] ' ( ' ) ' [ ' ]

{ } ( ' )
!

( ' ) ''

#  RPV failures in (0,T)

N RPV failures in (0,T)

= ⋅ = ⋅

=

∫

∫ −

λ φπ φ φ λ φ

λφ π φ φλφ

0

1

0

1

where π(φ‘) is the epistemic pdf for φ‘.  Note that φ, the overall conditional probability of PTS-
induced RPV failure given a PTS event, is given by:

φ φπ φ φ φ= =∫ ' ( ' ) ' [ ' ]d E
0

1
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Figure B.3 - Risk Model for General Interpretation of RPV Conditional Failure Probability

It is important to note that this quantity is only used in mean value computations (e.g., when
computing the expected number of events, as above, or when computing the mean PTS-
induced core damage frequency).  When uncertainty analyses are performed, φ‘ is the
appropriate quantity to use.

A Computational Note

In situations where Monte Carlo sampling is used to address both aleatory uncertainties and
epistemic uncertainties, it is still important to treat these two contributions separately.  In the
example of the PTS-induced RPV failure probability, an appropriate approach is illustrated in
Figure B.4.  Here, an inner sampling loop is used to estimate φ‘, which is conditioned on a
number of deterministic (but unknown) parameters, represented by the vector ω.  (Recall that
φ‘ quantifies the aleatory uncertainties in RPV failure.)  The epistemic uncertainties in the
deterministic parameters, represented by the joint distribution π(ω) are addressed via an outer
sampling loop.  (This is the so-called “propagation of uncertainties” phase of the PRA.)  Failure
to properly perform this sampling (e.g., by addressing epistemic uncertainties in the inner loop)
will lead to confusion in the interpretation of results.
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Figure B.4 - Schematic of Sampling Scheme for Addressing
Aleatory and Epistemic Uncertainties
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Appendix C - Example Application of Bayes’ Theorem for A Lognormal Variable

Problem

Consider a situation where C, a random variable, is believed to be lognormally distributed.  In
other words, the likelihood that C takes on a value in any specified range, e.g., (c,c+∆c), is
governed by a probability density function (pdf) of the form

f c
c

nc( | , ) expµ σ
πσ

µ
σ

= − −

















1
2

1
2

2l

where µ and σ are parameters of the distribution.  Note that the mean value and variance of C
can be determined from µ and σ, if they are known:

( ) ( )
E C e

Var C E C e

[ ]

[ ] [ ]

.=

= −

+ 2

2

0 5

2 1

µ σ

σ

In general, µ and σ are not known and must be estimated based on available data.

Assume that there are N data points for C: {c1,c2,...,cN}.  If N is large, µ and σ can be estimated
using a number of different methods (e.g., the method of maximum likelihood, Bayes’
Theorem).  If N is small, Bayes’ Theorem provides an appropriate tool.  In the case of this
example, Bayes’ Theorem states that the joint distribution for µ and σ is given by:
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
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=

∞

− ∞

∞

∏

∏∫∫

where π0(µ,σ) is the joint probability distribution for µ and σ prior to the collection of the data set 
{c1,c2,...,cN}.  The predictive pdf for C, i.e., the pdf to be used for predictive purposes, is the
average lognormal distribution function, where the posterior distribution for µ and σ is used as
the weighting function.

f c c c f c c c d dN N( | , , ) ( | , ) ( , | , , )1 1 1
0

K K=
∞

− ∞

∞

∫∫ µ σ π µ σ σ µ



16See for example G.E.P. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis,
Addison-Wesley, Reading, MA, 1973.
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Example Application

Consider the following data set:

Table C.1 - Sample Data Set

i Ci (dimensionless)

1 0.20

2 0.13

3 0.44

4 0.18

5 0.19

Sample Mean 0.228

Sample Variance 0.0118

Using a non-informative prior distribution (in this case, a distribution proportional to 1/σ)16,
Bayes’ Theorem and the predictive distribution for C can be readily evaluated using
commercial spreadsheet or equation solving software.  An example solution using Mathcad 6.0
is attached.  The mean, variance, 5th, 50th, and 95th percentiles of the predictive distribution are
as follows:

E[C] = 0.23
Var[C] = 0.018
C05 = 0.076
C50 = 0.21
C95 = 0.57

Computation Notes

1. The Mathcad worksheet has been written for clarity of presentation and not
computational efficiency.  For example, the integration symbols used in the worksheet
invoke the Mathcad-supplied automatic integrator.  For the problem of interest, pre-
computing the posterior distribution at a specified set of points and using a single-pass
trapezoidal integration scheme will lead to results of comparable accuracy with
significantly less computation time.  (On a 133 MHz Pentium PC, the provided
worksheet takes about 5 minutes to solve.  With the indicated modifications, only 30
seconds are required for the same problem.)
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2. The maximum likelihood estimates (MLEs) for µ and σ can be found using the sample
moments shown in Table C.1 and the relationships between E[C], Var[C], µ, and σ
specified earlier.  Figure C.1 compares the pdf based on these estimates with the pdf
developed using Bayes’ Theorem.  It can be seen that the MLE-based pdf is narrower;
this is because the MLE-based pdf does not account for the uncertainties in µ and σ
due to the limited sample size. 

Figure C.1 - Comparison of Bayesian and MLE pdfs



Example Application of Bayes' Theorem for A Lognormal Variable
Mathcad 6.0 Worksheet, Last Revised September 3, 1999

Data

C

0.20

0.13

0.44

0.18

0.19

N length( )C =mean( )C 0.228

i ..0 N 1 =var( )C 0.0118 (Mathcad uses "0" as the first
index of a vector/matrix)

Functions

π0( ),µ σ 1

σ
(Prior distribution)

L( ),,c µ σ .1

...2 π c σ
exp .0.5

ln( )c µ
σ

2
(Likelihood function - 1 data point)

LN( ),,c µ σ
= 0

N 1

i

L ,,ci µ σ (Likelihood function - N data points)

Initial Plot (Unnormalized Posterior Distribution)

m 25 j ..0 m k ..0 m (Linear grid for µ and σ)

µmin 2.5 µmax .5 σmin .01 σmax 1.5

µj µmin .j
m

( )µmax µmin σk σmin .k
m

( )σmax σmin

π1u ,j k
.LN ,,C µj σk π0 ,µj σk (Unnormalized posterior distribution)

0
10

20

0
10

20

0

200

400

π1u

(A plot of the unnormalized posterior is useful
for defining appropriate integration bounds.)

Bayes' Theorem Integration Constant

k d
σmin

σmax
σd

µmin

µmax
µ.LN( ),,C µ σ π0( ),µ σ

=k 85.986

Normalized Posterior Distribution Function

π1( ),µ σ ..1
k

LN( ),,C µ σ π0( ),µ σ



Posterior Distribution Moments (The moments of µ and σ are not needed
to develop the predictive distribution but
they can be useful.  Note that the
calculations would be more efficient if a
precalculated posterior and a single-pass
numerical integration scheme were used;
the Mathcad automatic integrator is used
for clarity of presentation.)

Eµ d
σmin

σmax
σd

µmin

µmax
µ.µ π1( ),µ σ

Eµ2 d
σmin

σmax
σd

µmin

µmax
µ.µ2 π1( ),µ σ Varµ Eµ2 Eµ2

Eσ d
σmin

σmax
σd

µmin

µmax
µ.σπ1( ),µ σ

Eσ2 d
σmin

σmax
σd

µmin

µmax
µ.σ2 π1( ),µ σ Varσ Eσ2 Eσ2

Eµσ d
σmin

σmax
σd

µmin

µmax
µ.( ).µ σ π1( ),µ σ Covµσ Eµσ .Eµ Eσ

Corrµσ Covµσ

.Varµ Varσ

=Eµ 1.568 (Mean value of µ)

=Varµ 0.063 (Variance of µ)

=Eσ 0.541 (Mean value of σ)

=Varσ 0.047 (Variance of σ)

=Covµσ 7.618 10 4
(Covariance of µ and σ)

=Corrµσ 0.014 (Correlation coefficient: µ and σ)

Predictive Distribution for C

npoint 30 ii ..0 npoint 1 (The pdf is calculated at 
specified points on a grid.  A 
logarithmic grid is used here.)CPmin 0.01 CPmax 0.80

CPii
.CPmin

CPmax
CPmin

ii
npoint 1

fCPii d

σmin

σmax

σd

µmin

µmax

µ..1

...2 π σCPii

exp ..5
ln CPii µ

σ

2

π1( ),µ σ



0 0.5 10

2

4

6

fCPii

CPii

(Plot of predictive pdf)

Cumulative Distribution and Moments (Trapezoidal integration is used
for ease and efficiency; CDF and
moments can also be found using
built-in integration functions.)

jj ..1 npoint 1

FCP0 0

FCPjj FCPjj 1
..0.5 fCPjj fCPjj 1 CPjj CPjj 1

ECP

= 1

npoint 1

jj

..0.5 .CPjj fCPjj
.CPjj 1 fCPjj 1 CPjj CPjj 1

ECP2

= 1

npoint 1

jj

..0.5 .CPjj
2 fCPjj

.CPjj 1
2 fCPjj 1 CPjj CPjj 1

VarCP ECP2 ECP2

C0 min( )CP (Use linear interpolation to find 
percentiles of C)

Given
linterp( ),,CP FCP C0 0.05
C05 Find( )C0

Given
linterp( ),,CP FCP C0 0.50
C50 Find( )C0

Given
linterp( ),,CP FCP C0 0.95
C95 Find( )C0

=ECP 0.229 (Mean value of C)
=VarCP 0.0177 (Variance of C)

=C05 0.076 (5th percentile of C)
=C50 0.209 (50th percentile of C)
=C95 0.571 (95th percentile of C)

Output Results To File case1.prn

Mii CPii fCPii FCPii

WRITEPRN( )case1 M


